Electrical Cable Sizing Criteria

CONTENTS

1. General	3
2. Site Conditions	3
3. Reference Documents and Standards	3
4. Cables Technical Data	4
5. Cable Sizing	4
5.1. Continuous Current Carrying Capacity (Io)	6
5.1.1. Maximum Allowed Current Carrying Capacity (Iz)	6
5.2. Voltage Drop	7
5.3. Maximum Short Circuit Current	7
6. Annex A. Standard references for MV Cables	10

7. Annex B	8. Standard references for LV Cables	16

1. General

The present specification deals with the selection criteria for the medium voltage and low voltage cables.

The selection shall be performed considering:

- Operating current condition
- Voltage drop
- Short circuit current condition
- Type of cable installation

2. Site Conditions

Maximum Ambient Temperature	48 °C
Minimum Ambient Temperature	1 °C
Humidity	62 %
Elevation above sea level	135 m

3. Reference Documents and Standards

- Electrical Design Criteria
- MV Cables Technical Specification
- LV and Control Cables Technical Specification

IEC 60502-1

Power cables with extruded insulation and their accessories for rated voltages from 1 kV (Um = 1.2 kV) up to 30 kV (Um = 36 kV) – Part 1: Cables for rated voltages of 1 kV (Um = 1.2 kV) and 3 kV (Um = 3.6 kV)

IEC 60502-2

Power cables with extruded insulation and their accessories for rated voltages from 1 kV (Um = 1.2 kV) up to 30 kV (Um = 36 kV) – Part 2: Cables for rated voltages from 6 kV (Um = 7.2 kV) up to 30 kV (Um = 36 kV) – Part 2: Cables for rated voltages from 6 kV (Um = 7.2 kV)

IEC 60364-5-52

Low-voltage electrical installations – Part 5-52: Selection and erection of electrical equipment – Wiring systems

IEC 60947-2

Low-voltage switchgear and control gear - Part 2: Circuit-breakers

IEC 61200-53

Electrical installation guide – Part 53: Selection and erection of electrical equipment – Switchgear and control gear

IEC 60364-4-43

Low-voltage electrical installations –Part 4-43: Protection for safety – Protection against overcurrent

4. Cables Technical Data

The cables technical data is specified at "Cable Characteristic Table". The meaning of any designation at "cable characteristic table" is explained below (items from (1) to (7)):

(1) Cable cross section

It specifies the number of cores forming the cable and also cross section of each single conductor (mm²); neutral/protective conductor is considered too.

(2) Conductor material It defines the material of the conductor (e.g. Cu, Al).

(3) Insulation material It is the code to specify the insulation material (e.g. XLPE, EPR, and PVC).

(4) Cable rated voltage

It specifies the voltage cable (U0/U/Um):

U0: is the rated voltage between conductor and earth or metallic screen for which the cable is designed.

U: is the rated voltage between conductors for which the cable is designed.

Um: is the maximum value of the "highest system voltage" for which the equipment may be used.

(5) Resistance

It is the resistance of the conductor, in (Ohm/Km) at the insulation temperature limit.

(6) Reactance

It is the reactance of the conductor, in (Ohm/Km), at the rated frequency and according to the type of installation.

(7) Rated current

It is the rated current " I_0 " of the cable (in Amperes) specified from the applicable standards, under the installation condition and the reference ambient temperature.

5. Cable Sizing

The following items shall be considered:

a) Short circuit capacity

b) Continuous current carrying capacity

c) Voltage drops in normal condition & transient conditions.

d) Any special operating conditions stated in electrical design criteria and/or other project specifications

The largest size of cables as determined from a, b, c and d shall be used.

a) Short circuit capacity

Maximum short circuit current shall be considered for determining cable short circuit capacity. The fault clearing time under short circuit conditions of power cables connected to circuit breakers shall be calculated by the followings:

1) The backup relay operating time at maximum fault level

2) 0.05 second to cover variation of settings

3) The circuit breaker operating time

Where power cables are protected by fuses, its cut off time shall be considered.

b) Continuous current carrying capacity (I_{θ})

Continuous current carrying capacity depends on the maximum permissible continuous conductor temperature and various types of cable installation. When applying that temperature, cable terminations and associated equipment shall have the ability to withstand the temperature without damage and to dissipate the heat due to cable temperature.

c) Voltage drop

The overall voltage drop in power cables will be limited to maximum 5% at full load and will not exceed 15% during motor starting . This voltage drop is from the main/source to the end consumer.

The nominal system voltage, the maximum impedance of each component and the full load current of each cable are used for voltage drop calculations.

5.1. Continuous Current Carrying Capacity (I_o)

Continuous current carrying capacity can be obtained from Annex A :Table B.2 & Table B.6 of IEC 60502-2 for MV Cables and Annex B Table B.52.2, Table B.52.3, Table B.52.4, Table B.52.5 & Table B.52.10 & Table B.52.12 of IEC 60364-5-52 for LV Cables. Different methods of installation for LV Cables are explained in Annex B Table B.52.1 from IEC 60364-5-52.

5.1.1. Maximum Allowed Current Carrying Capacity (Iz)

It is maximum current that can be continuously carried by the cable at the specified installation conditions. The maximum allowable current carrying capacity (Iz) is obtained by multiplying the cable rated current "I0" by the total derating factor (Kt), as follows:

$$Iz = Kt \times I_0(A)$$

Where:

Iz: maximum allowable current carrying capacity (A) *I0*: cable rated current (A)

Kt: total derating factor

Total derating factor for continuous current carrying capacity depends on two factors which are calculated as below:

$$Kt = K1 \times K2 \times 0.95$$

Where:

 K_1 : Ambient temperature and relevant correction factor K_2 : Derating factor relevant to the type of installation

 K_1 which is the correction factor of cable design for an ambient temperature can be deduced as follows:

> MV Cables

The correction factors for ambient air temperatures other than 30°C and ambient ground temperature other than 20°C are obtained from Annex A Table B.10 & Table B.11 from IEC 60502-2.

➢ LV Cables

The correction factors for ambient air temperatures other than 30°C and ambient ground temperature other than 20°C are obtained from Annex B Table B.52.14 & Table B.52.15 from IEC 60364-5-52.

*K*² which is the derating factor relevant to type of installation can be deduced as follows:

\succ MV cables

The K_2 for groups of more than one circuit in each phase is obtained from Annex A Table B.22 & Table B.23 from IEC 60502-2.

► LV cables

The *K*² for groups of more than one circuit in each phase is obtained from Annex B Table B.52.17, Table B.52.18, Table B.52.19, Table B.52. & Table B.52.21 from IEC 60364-5-52.

5.2. Voltage Drop

The unitary voltage drop (DV) is obtained by the following formula:

➢ For an AC system

$$DV = L*I*\frac{(R\cos\phi + X\sin\phi)100}{V_1} [\%]$$
$$V_1 = V/\sqrt{3} \quad 3 \ ph \ or \ 3 \ ph + N$$
$$V_1 = V/2 \quad 1 \ ph$$

Voltage drop is expressed as a percentage (%).

 \blacktriangleright For a DC system

$$DV = \frac{2L*I*R*100}{V} \left[\%\right]$$

Where:

V: Line to line voltage of the system (V)
R: Cable resistance (Ohm/Km)
X: Cable reactance (Ohm/Km)
Ø : Power factor angle
L: One-way length of conductor (Km)
I: Phase load current (A)

5.3. Maximum Short Circuit Current

For cables and insulated conductors, all current caused by a short-circuit occurring at any point of the circuit shall be interrupted in a time not exceeding that which brings the insulation of the conductors to the permitted limit temperature.

1) For operating times of protective devices up to 0.1s where asymmetry of the current is important and for current-limiting devices, " K^2S^2 " shall be greater than the value of the let-through energy " I^2t " quoted by the manufacturer of the protective device.

Therefore, the protective device shall be selected while let-through energy of the protective device $(I^2 t)$ is lower or equal to the withstand energy of the cable $(K^2 S^2)$:

$$I^2 t \leq K^2 S^2$$

Where:

 I^2t : is the specific let-through energy of the protective device which can be read on the curves supplied by the manufacturer

S: is the cable cross section (mm^2) , in case of conductors in parallel, it is the cross section of a single conductor

K: is a factor that depends on the cable insulating and conducting material (according to table 1)

2) For short-circuits duration greater than 0.1 s up to 5 s, the time, in which a given short-circuit current will raise the insulation of the conductors from the highest permissible temperature in normal duty to the limit temperature can, as an approximation, be calculated from the formula:

$$S = \frac{I_F \sqrt{t}}{K}$$

Where:

S: is the minimum cross-sectional area of the conductor (mm²) *t*: is the maximum duration of the fault (Sec)

K: is a factor depending on the materials of the cable (according to table1)

If: maximum short circuit current (A)

	Type of conductor insulation										
Property/ condition	PVC Thermoplastic		PVC Thermoplastic 90°C		EPR XLPE Thermosetting	Rubber 60 °C Thermosetting	Mi PVC sheathed	neral Bare unsheathed			
Conductor cross-sectional area mm²	≤ 300	>300	≤ 300	>300							
Initial temperature °C	70		90		90	60	70	105			
Final temperature °C	160	140	160	140	250	200	160	250			
Conductor material:											
Copper	115	103	100	86	143	141	115	135 -115 °			
Aluminium	76	68	66	57	94	93	-	-			
Tin-soldered joints in copper conductors	115 –		-	-	_	_	-	-			
^a This value shal	I be used	for bare	cables ex	posed to t	ouch.						

Table 1- Values of K for conductors according to IEC 60364-4-43, table 43A

For the duration "t" of the fault, three different values can be used to deal with different C.B. opening times, according to the selectivity study.

In this project following "*t*" values in seconds are considered according to manufacture catalogue:

➢ LV Cables (<1000V)</p>

Item	Description	ta (Sec)
1	Fault clearance time (FCT) for MCCB and	0.1
	MPCB with fixed short circuit release time	
2	Fault clearance time (FCT) for ACB and	0.2
	MCCB with adjustable short circuit release	
	time	
3	Fault clearance time (FCT) for incoming line	1
	from transformer	

≻MV Cables

Item	Descriptipn	ta (Sec)
1	Fault clearance time (FCT) for outgoing (motor	0.25
	and transformer) feeders	
2	Fault clearance time (FCT) for Interconnection	0.6
	feeders	
3	Fault clearance time (FCT) for incoming line	1
	from transformer	

6. Annex A Standard references for MV cables

	Buried in the g	direct ground	In single-v	way ducta	In a ir					
Nominal area of conductor	Trefoil	Flat spaced	Trefoil ducts	Flat touching ducts	Trefoil	Flat touching	Flat spaced			
Somestor	800		eo {{			000 	_o^~o			
mm ²	A	A	A	A	A	A	A			
16	109	113	103	104	125	128	150			
25	140	144	132	133	163	167	196			
35	166	172	157	159	198	203	238			
50	196	203	186	188	238	243	286			
70	239	246	227	229	296	303	356			
95	285	293	271	274	361	369	434			
120	323	332	308	311	417	426	500			
150	361	366	343	347	473	481	559			
185	406	410	387	391	543	550	637			
240	469	470	447	453	641	647	745			
300	526	524	504	510	735	739	846			
400	590	572	564	571	845	837	938			
Maximum cor	nductor tempe	rature		O° 00						
Ambient air te	emperature			30 °C						
Ground temp	erature			20 °C						
Depth of layir	ŋg			0,8 m						
Thermal resis	stivity of soil			1,5 Kʻr	n₩					
Thermal resid	stivity of earth	enware ducts		1,2 Kʻr	πW					
Screens bond	ded at both en	ds.								
* Current rat	Current rating calculated for cables having a rated voltage of 6/10 kV.									

Table B.2 – Current ratings for single-core cables with XLPE insulation – Rated voltage 3,6/6 kV to 18/30 kV * – Copper conductor

		Unarmoured		Armoured					
	Buried direct in ground	in a buried duct	In air	Buried direct in ground	In a buried duct	in air			
Nominal area of conductor					®(20,3 × 0,			
mm ²	A	A	А	A	А	A			
16	101	87	109	101	88	110			
25	129	112	142	129	112	143			
35	153	133	170	154	134	172			
50	181	158	204	181	158	205			
70	221	193	253	220	194	253			
95	262	231	304	263	232	307			
120	298	264	351	298	264	352			
150	334	297	398	332	296	397			
185	377	336	455	374	335	453			
240	434	390	531	431	387	529			
300	489	441	606	482	435	599			
400	553	50 1	696	54 1	492	683			
Maximum condu	uctor temperature	2	90 °C						
Ambient air tem	perature		30 °C						
Ground tempera	ature		20 °C						
Depth of laying			0,8 m						
Thermal resistiv	vity of soil		1,5 K·m	Ŵ					
Thermal resistiv	vity of earthenwa	re ducts	1 ,2 К ·п	١/W					
* Current ratin	g calculated for a	cables having a r	ated voltage of 6	/10 kV.					

Table B.6 – Current rating for three-core XLPE insulated cables – Rated voltage 3,6/6 kV to 18/30 kV * – Copper conductor, armoured and unarmoured

Table B.10 – Correction factors for ambient air temperatures other than 30 °C

Maximum conductor temperature	Ambient air temperature °C								
°C	20	25	35	40	45	50	55	60	
90	1,08	1,04	0,96	0,91	0,87	0,82	0,76	0,71	

Table B.11 – Correction factors for ambient ground temperatures other than 20 °C

Maximum conductor temperature	Ambient ground temperature °C									
°C	10	15	25	30	35	40	45	50		
90	1,07	1,04	0,96	0,93	0,89	0,85	0,80	0,76		

	hod of installation	Number			Number	of cables		
Met	hod of installation	of trays	1	2	3	4	6	9
	Tauching	1	1,00	0,88	0,82	0,79	0,76	0,73
	000000	2	1,00	0,87	0,80	0,77	0,73	0,68
Cables on		3	1,00	0,86	0,79	0,76	0,71	0,66
perforated trays	Spaced	1	1,00	1,00	0,98	0,95	0,91	-
	1 @ Ê @ @	2	1,00	0,99	0,96	0,92	0,87	-
	°,	з	1,00	0,98	0,95	0,91	0,85	-
		1	1,00	0,88	0,82	0,78	0,73	0,72
Cables on vertical	C Touching	2	1,00	0,88	0,81	0.76	0,71	0.70
perforated trays	© 25 mm © 0 © 0 Spaced	1	1,00	0,91	0,89	0,88	0,87	-
		2	1,00	0,91	0,88	0,87	0,85	-
	Touching	1	1,00	0,87	0,82	0,80	0,79	0,78
		2	1,00	0,86	0,80	0,78	0,76	0,73
Cables on ladder		з	1,00	0,85	0,79	0,76	0,73	0,70
supports, cleats, etc.	Spaced	1	1,00	1,00	1,00	1,00	1,00	-
	6	2	1,00	0,99	0,98	0,97	0,96	-
	ng	з	1,00	0,98	0,97	0,96	0,93	-
penerally less than 5 NOTE 2 Factors a	n are averages for the cable types an %. pply to single layer groups of cables a g each other. Values for such installa	s shown abo	ve and do	not apply	when cab	les are in:	stalled in i	more
NOTE 3 Values are pacing, the factors s								
OTE 4 Values are he factors should be	given for horizontal spacing between t reduced.	trays of 225 n	nm with tra	ays mount	ed back t	o back. Fo	ır closers	pacing

Table B.22 – Reduction factors for groups of more than one multi-core cable in air – To be applied to the current-carrying capacity for one multi-core cable in free air

м	ethod of installation	Number of		er of three cuits (Note		Use as a multiplier to
		trays	1	2	3	rating for
	Touching	1	0,98	0,91	0,87	
Perforated trays (Note 3)	000000	2	0,96	0,87	0,81	Three cables i horizontal formation
	"] ≥ 20 mm	з	0,95	0,85	0,78	
	Touching	1	1,00	0,97	0,96	
Ladder supports, cleats etc. (Note 3)		2	0,98	0,93	0,89	Three cables i horizontal formation
(~1 <u></u> ≥20 mm	з	0,97	0,90	0,86	
		1	1,00	0,98	0,96	
Perforated trays (Note 3)	≥20, t+-D, t=, t=-D, t=0, t=D, t=0, t=-D, t=0, t=-D,	2	0,97	0,93	0,89	
	<u>⊢</u> +-≥ 20 mm	з	0,96	0,92	0,86	
Vertical perforated	8 225 mm 80 ∠20 ₆	1	1,00	0,91	0,89	Three cables
trays (Note 4)		2	1,00	0,90	0,86	formation
		1	1,00	1,00	1,00	1
Ladder supports, cleats, etc. (Note 3)		2	0,97	0,95	0,93	
		3	0.96	0.94	0.90	

Table B.23 – Reduction factors for groups of more than one circuit of single-core cables (Note 2) – To be applied to the current-carrying capacity for one circuit of single-core cables in free air

NOTE 1 Values given are averages for the cable types and range of conductor sizes considered. The spread of values is generally less than 5 %.

NOTE 2 Factors are given for single layers of cables (or trefoil groups) as shown in the table and do not apply when cables are installed in more than one layer touching each other. Values for such installations may be significantly lower and should be determined by an appropriate method.

NOTE 3 Values are given for vertical spacings between trays of 300 mm. For closer spacing, the factors should be reduced.

NOTE 4 Values are given for horizontal spacing between trays of 225 mm with trays mounted back to back. For closer spacing, the factors should be reduced.

NOTE 5 For circuits having more than one cable in parallel per phase, each three phase set of conductors should be considered as a circuit for the purpose of this table.

7. Annex B Standard references for MV cables

					T	able and	column		
					carrying o single cir		5		
Reference met	hod of Installation		Thermoplastic Thermosettin insulated Insulated			setting lated	Mineral insulated	Amblent temperature factor	Group reduction factor
				Number of cores				ractor	ractor
			2	3	2	2 3			
1		2	3	4	5	6	7	8	9
Room	Insulated conductors (single- core cables) in conduit in a thermally insulated wall	A1	B.52.2 Col. 2	B.52.4 Col. 2	B.52.3 Col. 2	B.52.5 Col. 2	-	B.52.14	B.52.17
Room	Multi-core cable in condult in a thermally insulated wall	A2	B.52.2 Col. 3	B.52.4 Col. 3	B.52.3 Col. 3	B.52.5 Col. 3	-	B.52.14	B.52.17 except D (Table B.52.19 applies)
P	Insulated conductors (single- core cables) in conduit on a wooden wall	B1	B.52.2 Col. 4	B.52.4 Col. 4	B.52.3 Col. 4	B.52.5 Col. 4	-	B.52.14	B.52.17
Ø	Multi-core cable in conduit on a wooden wall	В2	B.52.2 Col. 5	B.52.4 Col. 5	B.52.3 Col. 5	B.52.5 Col. 5	-	B.52.14	B.52.17
8	Single-core or multi-core cable on a wooden wall	с	B.52.2 Col. 6	B.52.4 Col. 6	B.52.3 Col. 6	B.52.5 Col. 6	70 °C Sheath B.52.6 105 °C Sheath B.52.7	B.52.14	B.52.17
	Multi-core cable in ducts in the ground	D	B.52.2 Cal. 7	B.52.4 Cal. 7	B.52.3 Col. 7	B.52.5 Col. 7	=	B.52.15	B.52.19

Table B.52.1 – Installation reference methods forming basis of tabulated current-carrying capacities

Table B.52.1 (continued)

					1	able and	column		
					carrying o single cir		s		
Reference method of Inst	allation		Thermo Insul			setting lated	Mineral insulated	Amblent temperature factor	Group reduction factor
				Nur	nber of c	ores		actor	Tactor
			2 3		2 3		2 and 3		
1		2	3	4	5	6	7	8	9
Sheather cole or m cables dir grou	ulti-core act in the	D2	Cel 8		Cal 8		Cal 8 Cal 8		Col 8
Clearance to wall not lass than 0,3 limes cable diameter		E	Copper B. 52.10 Aluminium B. 52.11		Copper B. 52.12 Aluminium B. 52.13		70 °C Sheath B.52.8 105 °C Sheath B.52.9	B. 52.14	B.52.20
Clearance to wall not diameter		F	Copper B. 52.10 Aluminium B. 52.11		Copper B. 52.12 Alu minium B. 52.13		70 °C Sheath B.52.8 105 °C Sheath B.52.9	B.52.14	B.52.21
At least one cable diameter		G	Copper B.52.10 Aluminium B.52.11		Copper B. 52.12 Aluminium B. 52.13		70 °C Sheath B.52.8 105 °C Sheath B.52.9	B. 52.14	-

		Installation methods of Table B.52.1											
Nominal	A1	A2	B 1	B2	с	D1	D2						
cross- sectional area of conductor mm ²				0	Ø) C	8						
1	2	3	4	5	6	7	8						
Copper													
1,5	14,5	14	17,5	16,5	19,5	22	22						
2,5	19,5	18,5	24	23	27	29	28						
4	26	25	32	30	36	37	38						
6	34	32	41	38	46	46	48						
10	46	43	57	52	63	60	64						
16	61	57	76	69	85	78	83						
25	80	75	101	90	112	99	110						
35	99	92	125	111	138	119	132						
50	119	110	151	133	168	140	156						
70	151	139	192	168	213	173	192						
95	182	167	232	201	258	204	230						
120	210	192	269	232	299	231	261						
150	240	219	300	258	344	261	293						
185	273	243	341	294	392	292	331						
240	321	291	400	344	461	336	382						
300	367	334	458	394	530	379	427						

Table B.52.2 – Current-carrying capacities in amperes for methods of installation in Table B.52.1 – PVC insulation/two loaded conductors, copper or aluminium – Conductor temperature: 70 °C, ambient temperature: 30 °C in air, 20 °C in ground

			Installatio	n methods of Ta	ble B.52.1		
Nominal cross-	A1	A2	B1	B2	C	D1	D2
sectional area of conductor mm ²			Q	Q	9		$\overline{\mathbf{i}}$
1	2	3	4	5	6	7	8
Copper							
1,5	19	18,5	23	22	24	25	27
2,5	26	25	31	30	33	33	35
4	35	33	42	40	45	43	46
6	45	42	54	51	58	53	58
10	61	57	75	69	30	71	77
16	81	76	100	91	107	91	100
25	106	99	133	119	138	116	129
35	131	121	164	146	171	139	155
50	158	145	198	175	209	164	183
70	200	183	253	221	269	203	225
95	241	220	306	265	328	239	270
120	278	253	354	305	382	271	306
150	318	290	393	334	441	306	343
185	362	329	449	384	506	343	387
240	424	386	528	459	599	395	448
300	486	442	603	532	693	446	502

Table B.52.3 – Current-carrying capacities in amperes for methods of installation in Table B.52.1 – XLPE or EPR insulation, two loaded conductors/copper or aluminium – Conductor temperature: 90 °C, ambient temperature: 30 °C in air, 20 °C in ground

			Installs	tion methods	of Table B 52	1	
			B1			-	
Nominal cross-sectional	A1	A2	B1	B2	C	D1	D2
cross-sectional area of conductor mm ²			Q	Q	8		
1	2	3	4	5	6	7	8
Copper							
1,5	13,5	13	15,5	15	17,5	18	19
2,5	18	17,5	21	20	24	24	24
4	24	23	28	27	32	30	33
6	31	29	36	34	41	38	41
10	42	39	50	46	57	50	54
16	56	52	68	62	76	64	70
25	73	68	89	80	96	82	92
35	89	83	110	99	119	98	110
50	108	99	134	118	144	116	130
70	136	125	171	149	184	143	162
95	164	150	207	179	223	169	193
120	188	172	239	206	259	192	220
150	216	196	262	225	299	217	246
185	245	223	296	255	341	243	278
240	286	261	346	297	403	280	320
300	328	298	394	339	464	316	359

Table B.52.4 – Current-carrying capacities in amperes for methods of installation in Table B.52.1 – PVC insulation, three loaded conductors/copper or aluminium – Conductor temperature: 70 °C, ambient temperature: 30 °C in air, 20 °C in ground

Table B.52.5 – Current-carrying capacities in amperes for methods of installation in Table B.52.1 – XLPE or EPR insulation, three loaded conductors/copper or aluminium – Conductor temperature: 90 °C, ambient temperature: 30 °C in air, 20 °C in ground

		Installation methods of Table B.52.1												
Nominal cross-	A1	A2	B 1	B2	с	D1	D2							
sectional area of conductor mm ²			Ģ		8		\$							
1	2	3	4	5	6	7	8							
Copper														
1,5	17	16,5	20	19,5	22	21	23							
2,5	23	22	28	26	30	28	30							
4	31	30	37	35	40	36	39							
6	40	38	48	44	52	44	49							
10	54	51	66	60	71	58	65							
16	73	68	88	80	96	75	84							
25	95	89	117	105	119	96	107							
35	117	109	144	128	147	115	129							
50	141	130	175	154	179	135	153							
70	179	164	222	194	229	167	188							
95	216	197	269	233	278	197	226							
120	249	227	312	268	322	223	257							
150	285	259	342	300	371	251	287							
185	324	295	384	340	424	281	324							
240	380	346	450	398	500	324	375							
300	435	396	514	455	576	365	419							

Table B.52.10 – Current-carrying capacities in amperes for installation methods E, F and G of Table B.52.1 – PVC insulation, copper conductors – Conductor temperature: 70 °C, reference ambient temperature: 30 °C

			Installati	on methods o	FTADIE B.52.1							
	Multi-co	e cables		Single-core cables								
	True lands d	Three	Two loaded	Three loaded	Three	loaded conductors, flat						
Nominal cross-	Two loaded conductors	loaded conductors	conductors touching	conductors	Touching	Spaced						
sectional		conductors	touching	trefoil		Horizontal	Vertical					
area of conductor mm ²	1	8	00 500 00	S.	000 00 00 00 00							
	Method E	Method E	Method F	Method F	Method F	Method G	Method G					
1	2	3	4	5	6	7	8					
1,5	22	18,5	-	-	-	-	-					
2,5	30	25	-	-	-	-	-					
4	40	34	-	-	-	-	-					
6	51	43	-	-	-	-	-					
10	70	60	-			-	-					
16	94	80	-			-	-					
25	119	101	131	110	114	146	1 30					
35	148	126	162	137	143	181	162					
50	180	153	196	167	174	219	197					
70	232	196	251	216	225	281	254					
95	282	238	304	264	275	341	311					
120	328	276	352	308	321	396	362					
150	379	319	406	356	372	456	419					
185	434	364	463	409	427	521	480					
240	514	430	546	485	507	615	569					
300	593	497	629	561	587	709	659					
400	-	-	754	656	689	852	795					
500	-	-	868	749	789	982	920					
630	-	-	1 00 5	855	905	1 138	1 070					
500 630 DTE 1 Circu aped conduc	- - ular conductors fors and may s	afely be applie	754 868 1 005 d for sizes up ed to circular o	749 855 to and includ	689 789 905	982	795 920 1 070					

			Installatio	n methods of	Table B.52.1		
	Multi-co	re cables		s	ingle-core ca	bles	
			Two loaded	Three	Three	loaded conduc	ctors, flat
Nominal	Two loaded conductors	Three loaded conductors	conductors	loaded conductors	-	Sp	aced
cross-	CONDUCTORS	CONTRACTORS	touching	trefoil	Touching	Horizontal	Vertical
sectional area of conductor mm ²	9		or or O	8°		@ ¶ ₽ ₽ ₽	000 000
	Method E	Method E	Method F	Method F	Method F	Method G	Method G
1	2	3	4	5	6	7	8
1,5	26	23	-	-	-	-	-
2,5	36	32	-	-	-	-	-
4	49	42	-	-	-	-	-
6	63	54	-	-	-	-	-
10	86	75	-	-	-	-	-
16	115	100	-	-	-	-	-
25	149	127	161	135	141	182	161
35	185	158	200	169	176	226	201
50	225	192	242	207	216	275	246
70	289	246	310	268	279	353	318
95	352	298	377	328	342	430	389
120	410	346	437	383	400	500	454
150	473	399	504	444	464	577	527
185	542	456	575	510	533	661	605
240	641	538	679	607	634	781	719
300	741	621	783	703	736	902	833
400	-	-	940	823	868	1085	1008
500	-	-	1083	946	998	1253	1169
630	-	-	1 254	1 088	1 151	1 454	1 362
conductors an	d may safely be	are assumed fi applied to circ	ular conductors	nd including 16 5.	ó mm². Values	i for larger sizes	relate to shaped

Table B.52.12 – Current-carrying capacities in amperes for installation methods E, F and G of Table B.52.1 – XLPE or EPR insulation, copper conductors – Conductor temperature: 90 °C, reference ambient temperature: 30 °C

		Insu	lation	
Ambient temperature ^a			Min	eral ^a
°C	PVC XLPE and E		PVC covered or bare and exposed to touch 70 °C	Bare not exposed to touch 105 °C
10	1,22	1,15	1,26	1,14
15	1,17	1,12	1,20	1,11
20	1,12	1,08	1,14	1,07
25	1,06	1,04	1,07	1,04
30	1,00	1,00	1,00	1,00
35	0,94	0,96	0,93	0,96
40	0,87	0,91	0 ,85	0,92
45	0,79	0,87	0,78	0,88
50	0,71	0,82	0,67	0,84
55	0,61	0,76	0,57	0,80
60	0,50	0,71	0,45	0,75
65	-	0,65	-	0,70
70	-	0,58	-	0,65
75	-	0,50	-	0,60
80	-	0,41	-	0,54
85	-	-	-	0,47
90	-	-	-	0,40
95	-	-	-	0,32
⁸ For higher ambien	t temperatures, consi	ult the manufacturer.	•	

Table B.52.14 – Correction factor for ambient air temperatures other than 30 °C to be applied to the current-carrying capacities for cables in the air

Table B.52.15 – Corre	ction factors for ambient ground temperatures other than 20 °C	2
to be applied to the	current-carrying capacities for cables in ducts in the ground	

Ground temperature	Insula	ation
°C	PVC	XLPE and EPR
10	1,10	1,07
15	1,05	1,04
20	1,00	1,00
25	0,95	0,96
30	0,89	0,93
35	0,84	0,89
40	0,77	0,85
45	0,71	0,80
50	0,63	0,76
55	0,55	0,71
60	0,45	0,65
65	-	0,60
70	-	0,53
75	-	0,46
80	-	0,38

ltem	Arrangement (cables touching)		Number of circuits or multi-core cables											To be used with current-carrying capacities,	
		1	2	3	4	5	6	7	8	9	12	16	20	reference	
1	Bunched in air, on a surface, embedded or enclosed	1,00	0,80	0,70	0,65	0,60	0,57	0,54	0,52	0,50	0,45 0,41 0,38			B.52.2 to B.52.13 Methods A to F	
2	Single layer on wall, floor or unperforated cable tray systems	1,00	0,85	0,79	0,75	0,73	0,72	0,72	0,71	0,70				B.52.2 to B.52.7	
3	Single layer fixed directly under a wooden ceiling	0,95	0,81	0,72	0,68	0,66	0,64	0,63	0,62	0,61	No further reduction factor for more than nine circuits or multicore cables			Method C	
4	Single layer on a perforated horizontal or vertical cable tray systems	1,00	0,88	0,82	0,77	0,75	0,73	0,73	0,72	0,72				B.52.8 to B.52.13 Methods E and F	
5	Single layer on cable ladder systems or cleats etc.,	1,00	0,87	0,82	0,80	0,80	0,79	0,79	0,78	0,78					
NOTE	1 These factors are ap														

Table B.52.17 – Reduction factors for one circuit or one multi-core cable or for a group of more than one circuit, or more than one multi-core cable, to be used with current-carrying capacities of Tables B.52.2 to B.52.13

NOTE 2 Where horizontal clearances between adjacent cables exceeds twice their overall diameter, no reduction factor need be applied.

NOTE 3 The same factors are applied to: – groups of two or three single-core cables; – multi-core cables.

NOTE 4 If a system consists of both two- and three-core cables, the total number of cables is taken as the number of circuits, and the corresponding factor is applied to the tables for two loaded conductors for the two-core cables, and to the tables for three loaded conductors for the three-core cables.

NOTE 5 If a group consists of n single-core cables it may either be considered as n/2 circuits of two loaded conductors or n/3 circuits of three loaded conductors.

NOTE 6 The values given have been averaged over the range of conductor sizes and types of installation included in Tables B.52.2 to B.52.13 the overall accuracy of tabulated values is within 5 %.

NOTE 7 For some installations and for other methods not provided for in the above table, it may be appropriate to use factors calculated for specific cases, see for example Tables B.52.20 and B.52.21.

Number	Cable to cable clearance ^a								
of circuits	Nil (cables touching)	One cable diameter	0,125 m	0,25 m	0,5 m				
2	0,75	0,80	0,85	0,90	0,90				
3	0,65	0,70	0,75	0,80	0,85				
4	0,60	0,60	0,70	0,75	0,80				
5	0,55	0,55	0,65	0,70	0,80				
6	0,50	0,55	0,60	0,70	0,80				
7	0,45	0,51	0,59	0,67	0,76				
8	0,43	0,48	0,57	0,65	0,75				
9	0,41	0,46	0,55	0,63	0,74				
12	0,36	0,42	0,51	0,59	0,71				
16	0,32	0,38	0,47	0,56	0,68				
20	0,29	0,35	0,44	0,53	0,66				
Single-core c		00	õo,						
hey are avera rocess of aver lore precise va OTE 2 In cas	s given apply to an ins ge values for the range aging, together with ro lues are required they se of a thermal resistivi an be calculated by th	e of cable size: unding off, can may be calcula ity lower than 2	s and types quote result in some c ited by methods g ,5 K- m/W the cor	ed for Tables B.52 ases in errors up given in IEC 6028 rrections factors o	2.2 to B.52.5. 1 to ±10 %. (Wh 7-2-1.)				
creased and t	an be calculated by th	e metrious give							

Table B.52.18 – Reduction factors for more than one circuit, cables laid directly in the ground – Installation method D2 in Tables B.52.2 to B.52.5 – Single-core or multi-core cables

	A) Multi-core cables in single-way ducts							
Number of cables		Duct to duct	t clearance ^a					
	Nil (ducts touching)	0,25 m	0,5 m	1,0 m				
2	0,85	0,90	0,95	0,95				
3	0,75	0,85	0,90	0,95				
4	0,70	0,80	0,85	0,90				
5	0,65	0,80	0,85	0,90				
6	0,60	0,80	0,80	0,90				
7	0,57	0,76	0,80	0,88				
8	0,54	0,74	0,78	0,88				
9	0,52	0,73	0,77	0,87				
10	0,49	0,72	0,76	0,86				
11	0,47	0,70	0,75	0,86				
12	0,45	0,69	0,74	0,85				
13	0,44	0,68	0,73	0,85				
14	0,42	0,68	0,72	0,84				
15	0,41	0,67	0,72	0,84				
16	0,39	0,66	0,71	0,83				
17	0,38	0,65	0,70	0,83				
18	0,37	0,65	0,70	0,83				
19	0,35	0,64	0,69	0,82				
20	0,34	0,63	0,68	0,82				

Table B.52.19 – Reduction factors for more than one circuit, cables laid in ducts in the ground – Installation method D1 in Tables B.52.2 to B.52.5

Number of single- core circuits of two or three cables	Duct to duct clearance ^b						
	Nii (ducts touching)	0,25 m	0,5 m	1,0 m			
2	0,80	0,90	0,90	0,95			
3	0,70	0,80	0,85	0,90			
4	0,65	0,75	0,80	0,90			
5	0,60	0,70	0,80	0,90			
6	0,60	0,70	0,80	0,90			
7	0,53	0,66	0,76	0,87			
8	0,50	0,63	0,74	0,87			
9	0,47	0,61	0,73	0,86			
10	0,45	0,59	0,72	0,85			
11	0,43	0,57	0,70	0,85			
12	0,41	0,56	0,69	0,84			
13	0,39	0,54	0,68	0,84			
14	0,37	0,53	0,68	0,83			
15	0,35	0,52	0,67	0,83			
16	0,34	0,51	0,66	0,83			
17	0,33	0,50	0,65	0,82			
18	0,31	0,49	0,65	0,82			
19	0,30	0,48	0,64	0,82			
20	0,29	0,47	0,63	0,81			
^o Single-core cables	، تقرير ال	9 <u>_</u> 6	<u> </u>				
hey are average val rocess of averaging, rore precise values a OTE 2 In case of a	n apply to an installati ues for the range of c together with roundin re required they may be a thermal resistivity low calculated by the metho	able sizes and types g off, can result in so e calculated by methor ver than 2,5 K -m/W t	quoted for Tables B ome cases in errors ds given in the IEC 60 he corrections factor	8.52.2 to B.52.5. Th up to ±10 %. When 0287series.			

		Number of trays	N	Number of cables per tray or ladder					
Method	of ins	stallation in Table A.52.3	or ladders	1	2	3	4	6	9
Perforated cable tray systems (note 3)	31	Touching 	1 2 3 6	1,00 1,00 1,00 1,00	0,88 0,87 0,86 0,84	0,82 0,80 0,79 0,77	0,79 0,77 0,76 0,73	0,76 0,73 0,71 0,68	0,73 0,68 0,66 0,64
		Spaced De Spaced Space	1 2 3	1,00 1,00 1,00	1,00 0,99 0,98	0,98 0,96 0,95	0,95 0,92 0,91	0,91 0,87 0,85	- - -
Vertical perforated cable tray systems (note 4)	31	Touching	1 2	1,00 1,00	0,88 0,88	0,82 0,81	0,78 0,76	0,73 0,71	0,72 0,70
		Spaced	1 2	1,00 1,00	0,91 0,91	0,89 0,88	0,88 0,87	0,87 0,85	-
Unperforated cable tray systems	31	Touching 	1 2 3 6	0,97 0,97 0,97 0,97	0,84 0,83 0,82 0,81	0,78 0,76 0,75 0,73	0,75 0,72 0,71 0,69	0,71 0,68 0,66 0,63	0,68 0,63 0,61 0,58
Cable ladder systems, cleats, etc. (note 3)	32 33 34	Touching	1 2 3 6	1,00 1,00 1,00 1,00	0,87 0,86 0,85 0,84	0,82 0,80 0,79 0,77	0,80 0,78 0,76 0,73	0,79 0,76 0,73 0,68	0,78 0,73 0,70 0,64

Table B.52.20 – Reduction factors for group of more than one multi-core cable to be applied to reference current-carrying capacities for multi-core cables in free air – Method of installation E in Tables B.52.8 to B.52.13

Table B.52.20 (continued)

	Method of installation in Table A.52.3		Number	Number of cables per tray or ladder					
Method of			of trays or ladders	1	2	3	4	6	9
		Spaced							
			1	1,00	1,00	1,00	1,00	1,00	-
		18° 8° 80	2	1,00	0,99	0,98	0,97	0,96	-
		000 000 000 → 2 20 mm	3	1,00	0,98	0,97	0,96	0,93	-

NOTE 1 Values given are averages for the cable types and range of conductor sizes considered in Tables A.52.8 to A.52.13. The spread of values is generally less than 5 %.

NOTE 2 Factors apply to single layer groups of cables as shown above and do not apply when cables are installed in more than one layer touching each other. Values for such installations may be significantly lower and has to be determined by an appropriate method.

NOTE 3 Values are given for vertical spacing between cable trays of 300 mm and at least 20 mm between cable trays and wall. For closer spacing the factors should be reduced.

NOTE 4 Values are given for horizontal spacing between cable trays of 225 mm with cable trays mounted back to back. For closer spacing the factors should be reduced.

	Method of installation in Table A.52.3		Number of	Number of three-phase circuits per tray or ladder			Use as a multiplier to	
Metho	d of in	stallation in Table A.52.3	trays or ladders	ladders 1		3	current- carrying capacity for	
Perforated cable tray systems (note 3)	31	Touching 2 000000000000000000000000000000000000	1 2 3	0,98 0,96 0,95	0, 91 0, 87 0, 85	0,87 0,81 0,78	Three cables in horizontal formation	
Vertical perforated cable tray systems (note 4)	31	Touching	1 2	0,96 0,95	0,86 0,84	-	Three cables in vertical formation	
Cable ladder systems, cleats, etc. (note 3)	32 33 34	Touching 2 300 mm 2 300 mm 2 300 mm	1 2 3	1,00 0,98 0,97	0,97 0,93 0,90	0,96 0,89 0,86	Three cables in horizontal formation	
Perforated cable tray systems (note 3)	31	≥ 20° C T T T T T T T T T T T T T T T T T T T	1 2 3	1,00 0,97 0,96	0, 98 0, 93 0, 92	0,96 0,89 0,86		
Vertical perforated cable tray systems (note 4)	31	Spaced	1 2	1,00 1,00	0, 91 0, 90	0,89 0,86	Three cables in trefoil formation	
Cable ladder systems, cleats, etc. (note 3)	32 33 34	≥ 20, 1→ 0, 200 mm ≥ 300 mm 200 mm	1 2 3	1,00 0,97 0,96	1,00 0,95 0,94	1,00 0,93 0,90		

Table B.52.21 – Reduction factors for groups of one or more circuits of single-core cables to be applied to reference current-carrying capacity for one circuit of single-core cables in free air – Method of installation F in Tables B.52.8 to B.52.13

Table B.52.21 (continued)

NOTE 1 Values given are averages for the cable types and range of conductor sizes considered in Table B.52.8 to B.52.13. The spread of values is generally less than 5 %.

NOTE 2 Factors are given for single layers of cables (or trefoil groups) as shown in the table and do not apply when cables are installed in more than one layer touching each other. Values for such installations may be significantly lower and should be determined by an appropriate method.

NOTE 3 Values are given for vertical spacing between cable trays of 300 mm and at least 20 mm between cable trays and wall. For closer spacing the factors should be reduced.

NOTE 4 Values are given for horizontal spacing between cable trays of 225 mm with cable trays mounted back to back. For closer spacing the factors should be reduced.

NOTE 5 For circuits having more than one cable in parallel per phase, each three phase set of conductors should be considered as a circuit for the purpose of this table.

NOTE 6 If a circuit consists of *m* parallel conductors per phase, then for determining the reduction factor this circuit should be considered as *m* circuits.